Hopf bifurcations in plasma layers between rigid planes in thermal magnetohydrodynamics, via a simple formula
نویسندگان
چکیده
منابع مشابه
Hopf Bifurcations in Cancer Models
The purpose of the present paper is to prove that there are nonconstant periodic integral curves of a mathematical model of cancer growth. We shall prove, there are Hopf bifurcations in the mathematical model and that the oscillating solutions are uniformly, asymptotically stable.
متن کاملDiscretizing Dynamical Systems with Hopf-Hopf Bifurcations
We consider parameter-dependent, continuous-time dynamical systems under discretizations. It is shown that Hopf-Hopf bifurcations are O(h)-shifted and turned into double Neimark-Sacker points by general one-step methods of order p. Then we discuss the effect of discretization methods on the emanating Hopf curves. The numerical approximation of the critical eigenvalues is analyzed too. The resul...
متن کاملAmplified Hopf Bifurcations in Feed-Forward Networks
In [18] the authors developed a method for computing normal forms of dynamical systems with a coupled cell network structure. We now apply this theory to one-parameter families of homogeneous feed-forward chains with 2-dimensional cells. Our main result is that Hopf bifurcations in such families generically generate branches of periodic solutions with amplitudes growing like ∼ |λ| 1 2 ,∼ |λ| 1 ...
متن کاملNilpotent Hopf Bifurcations in Coupled Cell Systems
Network architecture can lead to robust synchrony in coupled systems and, surprisingly, to codimension one bifurcations from synchronous equilibria at which the associated Jacobian is nilpotent. We prove three theorems concerning nilpotent Hopf bifurcations from synchronous equilibria to periodic solutions, where the critical eigenvalues have algebraic multiplicity two and geometric multiplicit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti Lincei. Scienze Fisiche e Naturali
سال: 2020
ISSN: 2037-4631,1720-0776
DOI: 10.1007/s12210-020-00955-1